
Staged Concurrent Program Analysis*

www.nec-labs.com

Nishant Sinha

Joint work with Chao Wang

System Analysis and Verification Group,

NEC Labs, Princeton, NJ

* To appear in the Conference on Foundations of Software Engineering, November 2010.

Analyzing Concurrent Programs

o .. is HARD!

o Extensive work on analysis of Concurrent

Programs

� Static analysis: SPIN, Java Path Finder, …� Static analysis: SPIN, Java Path Finder, …

� Dynamic/Runtime analysis: Verisoft, Eraser, CHESS, …

� Combinations: FUSION, …

o Wide variety of bugs: data race, deadlock,

assertion violation, atomicity violation, ...

This talk

o A new staged symbolic analysis technique

� static analysis

� analyze multiple paths, schedules and inputs � analyze multiple paths, schedules and inputs

simultaneously

� find bugs

� sometimes, absence of bugs too

� rethinking from basics

Two Sources of Inefficiency

o Bi-modal Reasoning

� alternating intra- and inter-thread reasoning

� duplicated intra-thread reasoning

o Scheduler

� does not model

interference directly

T1 :

x = 3;

t = x;

a = t + 1;

b = a + 3;

assert(b > 4);

T2 :

.....

.....

x = 5;

.....

Bi-modal Reasoning

Thread T1

L1: a0 = x;

a1 = a0 + 1;

z1 = a1;

a = a + 1; z = a ;

Thread T2

L3: x = 0;

...

L4: x = 5;

...

A: assert (x == 5 || x >= 105);

Re-analyzed

for each

interleaving

o Goal: Infer (a100 = a0 + 100) only once (not for each interleaving)

o Path compression methods only work inside atomic `transactions’

a2 = a1 + 1; z2 = a2;

...

a99 = a98 + 1; z99 = a99;

a100 = a99 + 1;

L2: x = a100;

A: assert (x == 5 || x >= 105);interleaving

*Arrows show interference

Scheduler

o Omnipresent in concurrent analysis

� Explicit: context-switching

� Symbolic: auxiliary variable [Vi (sch = i) => Ri)]

o Does not model interference directly

if (c) {

*p = 0;

}

c = true;

p = 0;

Context-bounding helps but is not property-driven

Background: Bounded Programs

o Verifying Concurrent Programs is not decidable

� even with finite data (Boolean Programs)

o Our focus: Bounded Programs

� Loops, Recursion unrolled finitely

� therefore, bounded thread creation and heap � therefore, bounded thread creation and heap

� Real programs (not Boolean)

• contain pointers, arrays, structures, etc.

• may contain infinite datatypes (with decidable theory)

� Decidable

� Witnesses found are real but Proofs may be spurious

Program Representation

o Concurrent Control Flow Graph (CCFG)
� Extension of sequential CFGs

� Thread Fork, Join nodes

� Functions modeled with call/return edges

� Locks/Synchronization as shared variables
• guarded assignments to model test-and-set

o Memory modeling
� Compute shared location accesses using flow-insensitive pointer

analysis

� Global heap array + Local heap for each thread

� Transform statements
• one global access per statement

• *p = l ����MemG[p] = l; (if p accesses a shared location)

Example

int x;

void add_global ()

{

if (x < 1) x = x + 1;

else x = x + 2;

}

int main (int argc, char *argv[])int main (int argc, char *argv[])

{

pthread_t t1, t2;

x = 0;

pthread_create(&t1, NULL,

NULL,add_global);

pthread_create(&t2, NULL,

NULL, add_global);

pthread_join(t1);

pthread_join(t2);

assert(x == 3);

}

Avoid Bi-modal Reasoning

o Obvious idea: Summarize each thread first!

o But, summarize in presence of concurrency?

int x; //global

int func (int a) —

if (a) return x;

else return x + 1;

˝

ret -> ite (a0, x0, x0+1)

int func2 () —

x = 3;

.....

˝

?

Interference Abstraction

o Reading a shared location x may not correspond to last write to x in
the same thread
� interfering concurrent write to x

o Idea: Interference Abstraction
� introduce a symbolic variable for each read

� decouple reads and writes

T1 :

x = 3;

T2 :

.....

.....� decouple reads and writes

� couple them later

o Contrast with state abstraction at a program point by duplicating
shared variables
� e.g., translation to sequential program under context bounds

� num of shared accesses × num of shared vars

� Interference Abstraction: linear in the number of reads

t = rx;

.....

x = 5;

.....

Staged Concurrent Program Analysis

Interference-

Modular

Summarization

Compose Summaries

(axioms encode

interference between

Check properties

(Using a decision Summarization

(summary with only

global accesses)

interference between

global accesses)

(Using a decision

procedure)

Summarization involves

only intra-thread reasoning

- Without a scheduler

- Only inter-thread reasoning

- Find concrete

property violations

Stage 1: SummarizationStage 1: Summarization

Stage 1: Summarization

o Interference-Modular Summarization

� do away precisely with local control and data flow

� keep the reads and writes of shared variables intact

o Why?

� avoid bi-modal reasoning� avoid bi-modal reasoning

� because only global accesses matter for inter-thread

reasoning

o How?

� Data flow analysis modulo Interference Abstraction

Example

int x;

void add_global ()

{

if (x < 1) x = x + 1;

else x = x + 2;

}

int main (int argc, char *argv[])int main (int argc, char *argv[])

{

pthread_t t1, t2;

x = 0;

pthread_create(&t1, NULL,

NULL,add_global);

pthread_create(&t2, NULL,

NULL, add_global);

pthread_join(t1);

pthread_join(t2);

assert(x == 3);

}

FORK

2

3 4

1

x = 0

x >= 1x < 1

tmp = x tmp = x

W1

R1

R3R2

[true, M0]

W1

[true, M0]

[true, M1]

[r1 < 1, M1]

Access loc val occ

W1 @x 0 true

R1 @x r1 true

R2 @x r2 r1 < 1

W2 @x r2 + 1 r1 < 1

R4 @x r4 true

[true, M0]

JOIN

5

7

9

8

6

ERR

x = tmp + 1 x = tmp + 2

x != 3

W3W2

R4

W1

R1

R2 R3

W3W2

R4

[r1 < 1,

sto(M1,@tmp, r2)]

[r1 < 1,

sto(M1,@tmp, r2)]

[r1 >= 1,

sto(M1,@tmp, r3)]

[true,

sto(M1,@tmp, ite (r1 < 1, r2, r3)]
[true, M0]

[r4 != 3, M0]

Example: Summary

Interference Skeleton (IS)

Summarization Rules

MemG[l] = r;

[Ψ, M, E]

[Ψ, M, A]

l’ = eval (l, M), v = eval (r, M)

Fresh access A = (Ψ, l’, v)

Add E -> A to Skeleton

•Extends to standard Sharir-Pnueli, RHS style interprocedural

analysis

• Function Summarization and Reuse

[Ψ1, M1, E1]

[Ψ1 \/ Ψ2 , ite(Ψ1 ,M1, M2), E1 U E2]

[Ψ2, M2, E2]

Intra-Thread Join

Stage 2: Axiomatic CompositionStage 2: Axiomatic Composition

Stage 2: Axiomatic Composition

o Interference Skeleton -> Feasible Program Executions?

� need to couple the reads with writes

� not via a scheduler!

o Idea: Compose Axiomaticallyo Idea: Compose Axiomatically

� Axioms of Sequential Consistency (SC)

• each read must link with some write

• read must link with last such write in execution order

� SC predominantly employed for straight line programs

• how do we generalize to programs with branching?

Sequential Consistency Axioms

o Specified in typed first-order logic

� read r, write w: Access type

o Link Predicate: link (r,w)

� holds if r obtains value from write w in an execution� holds if r obtains value from write w in an execution

� Exclusive : link (r,w) => ∀ w’. ¬ link (r,w’)

o Must-Happen-before Predicate : hb (w,r)

� w must happen before r in the execution

� strict partial order

SC Axioms (contd.)

o ΠΠΠΠ = ΠΠΠΠ ÆÆÆÆ ΠΠΠΠ ÆÆÆÆ ΠΠΠΠ

o ΠΠΠΠ (must link some, only if occurs)

� ∀ r. occ(r) ⇔ ∃ w. occ(w) Æ link (r,w)

o ΠΠΠΠ (local consistency)

� ∀ r, w. link(r,w) ⇒

Incorporate occ predicate

to handle branching

r

w

w’

� ∀ r, w. link(r,w) ⇒

(loc(r) = loc (w) Æ val(r) = val(w) Æ hb(w,r))

o ΠΠΠΠ (global consistency)

� ∀ r, w. link (r,w) ⇒

∀ w’. (occ(w’) Æ hbet(w, w’,r)) ⇒ loc(w) ≠ loc(w’)

r

w

r

w

w’

Instantiating Axioms

o Explicit instantiation for

all reads and writes

o ΠΠΠΠ := occ(r2) ⇔⇔⇔⇔ (occ(w1) ÆÆÆÆ link (r2, w1)
ÇÇÇÇ occ(w2’) ÆÆÆÆ link (r2, w2’) ...

o ΠΠΠΠ := o ΠΠΠΠ := link (r2, w2’) ⇒⇒⇒⇒ loc(r2) = loc(w2’) ÆÆÆÆ val(r2) = val(w2’)
ÆÆÆÆ hb (w2’, r2)

o ΠΠΠΠ := link (r2, w2’) ⇒⇒⇒⇒

hbet (w2’, w2, r2) ÆÆÆÆ occ(w2’) ⇒⇒⇒⇒ (loc(w2’) ≠≠≠≠ loc(r2))

o At most cubic in number of reads and writes

Efficient Encoding

o Employ UFs over theory of integers

� avoid quantified axioms for link and hb

o Link Predicate:

� link (r,w) ⇔⇔⇔⇔ ID (r) = ID (w)

� assign unique IDs to all writes

o Must Happen-Before Predicate

� hb (w,r) ⇔⇔⇔⇔ Clk (w) < Clk (r)

o Interference Pruning (few slides later)

Finding BugsFinding Bugs

Stage 3: Finding Bugs

o Data races, say between r, w

� ΦP := ¬ hb(r,w) Æ ¬ hb(w,r)

o Assertion Violation

� ΦP := path condition for violation

Æ Π Æ r4≠ 3

� ΦP := path condition for violation

o Full Encoding

� Φ := ΦIS Æ Π Æ ΦP

� Discharged to an SMT solver

o Theorem: Φ is satisfiable iff property violated
in the bounded program

Example

if (c) {

c = false;

....

c = true;

Goal: Detect NULL pointer access violation

- suppose the solver links Rp with Wp (Π , Π)

- and, both occ(Rp) and occ(Wp) hold (Π)

occ(Rp) ⇒ occ (Rc)

also, occ(Rp) ⇒ val (Rc) = true (ΦIS)
Rc

Wc1

Wcif (c) {

*p = 0;

}

c = true;

p = 0;

⇒ ΦIS

link (Rc, Wc1) Ç link (Rc, Wc2) (Π)

link (Rc, Wc1) leads to conflict (Π)

so, link (Rc, Wc2) and link (Rp, Wp)

so, hb (Wc2, Rc) and hb (Wp, Rp) (Π)

linearize to obtain a feasible trace

WpRp

Rc Wc2

Interference Pruning

o Π may have many redundant instantiations

� Many r-w interferences are infeasible

� Π: ¬ link(r,w) holds (w’ occurs after w, before r in all runs)

� Π: ¬ hb(w,r) holds (w occurs after r in all runs)� Π: ¬ hb(w,r) holds (w occurs after r in all runs)

� Π: ¬ hbet(w,w’,r) (for some w, w’, r)

o Static analysis of Interference Skeleton

� Prune away infeasible r-w interferences

Implementation

o FUSION framework for analyzing concurrent

programs

� combines dynamic and symbolic analysis

� used to obtain (bounded) program slices

o Yices SMT solver

o Compared with/without summarization (S),

pruning optimization (O)

Experiments

Bm (#Thr) |N| |E| |R| |W| -S (FSE’09) +S

SB(2) 108 107 6 19 1 1

SB(3) 723 722 270 289 9 3

Ind (20) 1312 1439 110 291 0.1 0.1

Ind (29) 2446 2691 360 887 129 6

Ind (30) 2859 3149 468 1104 517 7

Ind (31) 3398 3747 594 1332 >1800 13

Ind (32) 4585 5065 888 1856 >1800 104

acc (11) 906 905 134 372 1 1

acc (21) 1748 1747 708 25 >1800 10

Experiments

Bm (#Thr) |N| |E| |R| |W| +S-O +S+O

SB(2) 108 107 6 19 1 1

SB(3) 723 722 270 289 711 3

Ind (20) 1312 1439 110 291 355 0.1

Ind (29) 2446 2691 360 887 >1800 6

Ind (30) 2859 3149 468 1104 >1800 7

Ind (31) 3398 3747 594 1332 >1800 13

Ind (32) 4585 5065 888 1856 >1800 104

acc (11) 906 905 134 372 121 1

acc (21) 1748 1747 708 25 >1800 10

Conclusions

o Avoiding Bi-modal reasoning leads to

significant (possibly exponential) speedups

o Sequential Consistency (SC) axioms to

compose shared memory programs

� model interference directly

� avoid scheduler

o Future work: Automated axiom instantiations

Thanks !

Questions?

Main thread

Multithreaded C/C++ Program

Heap (storing shared objects)

Thread 1 Thread 2 Thread 3

Test Input

FUSION framework

We control the scheduling for you

We repeatedly run the program till all

possible scenarios are tested

POSIX Threads Library

(Pthreads)

Rest of the Linux OS

FUSION: our scheduler

� No False Bugs

� Easier for developers to use

